Particle Swarm Optimization of Multilayer Multi-Sized Metamaterial Absorber for Long-Wave Infrared Polarimetric Imaging

Author:

Li Junyu12,Li Jinzhao1,Yi Fei1345ORCID

Affiliation:

1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

2. IRay Technology Co., Ltd., Yantai 264006, China

3. Wuhan National Research Center for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China

4. Optics Valley Laboratory, Wuhan 430074, China

5. Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China

Abstract

Infrared polarization imaging holds significant promise for enhancing target recognition in both civil and defense applications. The Division of Focal Plane (DoFP) scheme has emerged as a leading technology in the field of infrared polarization imaging due to its compact design and absence of moving parts. However, traditional DoFP solutions primarily rely on micro-polarizer arrays, necessitating precise alignment with the focal plane array and leading to challenges in alignment and the introduction of optical crosstalk. Recent research has sought to augment the performance of infrared detectors and enable polarization and spectral selection by integrating metamaterial absorbers with the pixels of the detector. Nevertheless, the results reported so far exhibit shortcomings, including low polarization absorption rates and inadequate polarization extinction ratios. Furthermore, there is a need for a comprehensive figure of merit to systematically assess the performance of polarization-selective thermal detectors. In this study, we employ the particle swarm optimization algorithm to present a multilayer, multi-sized metamaterial absorber capable of achieving a remarkable polarization-selective absorption rate of up to 87.2% across the 8–14 μm spectral range. Moreover, we attain a polarization extinction ratio of 38.51. To elucidate and predict the resonant wavelengths of the structure, we propose a modified equivalent circuit model. Our analysis employs optical impedance matching to unveil the underlying mechanisms responsible for the high absorption. We also introduce a comprehensive figure of merit to assess the efficacy of infrared polarization detection through the integration of metamaterials with microbolometers. Finally, drawing on the proposed figure of merit, we suggest future directions for improving integrated metamaterial absorber designs, with the potential to advance practical mid-infrared polarization imaging technologies.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

the Innovation Project of Optics Valley Laboratory

Shenzhen Science and Technology Program

The Fundamental Research Initiative Funds for Huazhong University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3