Predictive Machine Learning of Objective Boundaries for Solving COPs

Author:

Spieker HelgeORCID,Gotlieb ArnaudORCID

Abstract

Solving Constraint Optimization Problems (COPs) can be dramatically simplified by boundary estimation, that is providing tight boundaries of cost functions. By feeding a supervised Machine Learning (ML) model with data composed of the known boundaries and extracted features of COPs, it is possible to train the model to estimate the boundaries of a new COP instance. In this paper, we first give an overview of the existing body of knowledge on ML for Constraint Programming (CP), which learns from problem instances. Second, we introduce a boundary estimation framework that is applied as a tool to support a CP solver. Within this framework, different ML models are discussed and evaluated regarding their suitability for boundary estimation, and countermeasures to avoid unfeasible estimations that avoid the solver finding an optimal solution are shown. Third, we present an experimental study with distinct CP solvers on seven COPs. Our results show that near-optimal boundaries can be learned for these COPs with only little overhead. These estimated boundaries reduce the objective domain size by 60-88% and can help the solver find near-optimal solutions early during the search.

Funder

The Research Council of Norway

European Commission

Publisher

MDPI AG

Reference75 articles.

1. Integrating operations research in constraint programming

2. Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation

3. Principles and Practice of Constraint Programming

4. Learning objective boundaries for constraint optimization problems;Spieker,2020

5. Handbook of Constraint Programming (Foundations of Artificial Intelligence);Rossi,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3