Abstract
Interpretability is becoming increasingly important for predictive model analysis. Unfortunately, as remarked by many authors, there is still no consensus regarding this notion. The goal of this paper is to propose the definition of a score that allows for quickly comparing interpretable algorithms. This definition consists of three terms, each one being quantitatively measured with a simple formula: predictivity, stability and simplicity. While predictivity has been extensively studied to measure the accuracy of predictive algorithms, stability is based on the Dice-Sorensen index for comparing two rule sets generated by an algorithm using two independent samples. The simplicity is based on the sum of the lengths of the rules derived from the predictive model. The proposed score is a weighted sum of the three terms mentioned above. We use this score to compare the interpretability of a set of rule-based algorithms and tree-based algorithms for the regression case and for the classification case.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献