Author:
Ma Changjian,Liu Shenglin,Wang Xuejun,Wang Lu,Muhammad Tahir,Xiao Yang,Wang Yue,Sun Zeqiang,Li Yunkai
Abstract
Water scarcity is the most significant constraint for grain production in the North China Plain (NCP). Water-saving irrigation technology is a valuable tool for addressing the NCP’s water scarcity. Drip irrigation is considered as one of the most water-saving irrigation technologies. However, drip irrigation is not now commonly used in NCP field grain crops (particularly maize). Fertilizers are accurately administered to summer-maize root soil by recycling the drip-irrigation system of winter wheat. To increase the water and fertilizer-use efficiency of summer-maize fields, the coupling body of root-zone soil water and fertilizer for summer maize was thoroughly adjusted using a combination of emitter flow rate, irrigation quota, and fertilizer frequency. In this experiment, a split plot design with randomized blocks was employed. The primary plot was emitter flow rate (0.8 and 2.7 L/h), the subplot was irrigation water quota (120 and 150 m3/hm2, 1 hm2 = 10,000 m2), and the final plot was fertigation frequency (7, 14, and 28 days). The grain yield, water-use efficiency and fertilizer-use efficiency of summer maize were measured in this study. The results showed that grain yield and water-use efficiency (WUE) of the small-flow drip-irrigation treatment (emitter flow rate < 1 L/h) were significantly higher than the large-flow treatment (emitter flow rate > 1 L/h); the rates of grain yield increase were 8.2% and 13.3% and WUE were 3.5% and 8.0%, respectively. A higher irrigation quota can increase the yield of summer maize. The maximum yield and WUE were observed at the fertigation frequency of 7 days under small-flow drip-irrigation conditions. All comparisons and analyses showed that small-flow drip irrigation combined with high fertigation frequency could obtain higher yield and WUE in the NCP. This study proposes a new way to improve water and fertilizer utilization efficiency to achieve the goal of “increasing grain yield by fertilizing” and “adjusting the quality by fertilizing”, from the perspective of winter wheat–summer maize no-tillage annual rotation planting.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Key R&D Plan of Shandong Province
Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献