Coupling Regulation of Root-Zone Soil Water and Fertilizer for Summer Maize with Drip Irrigation

Author:

Ma Changjian,Liu Shenglin,Wang Xuejun,Wang Lu,Muhammad Tahir,Xiao Yang,Wang Yue,Sun Zeqiang,Li Yunkai

Abstract

Water scarcity is the most significant constraint for grain production in the North China Plain (NCP). Water-saving irrigation technology is a valuable tool for addressing the NCP’s water scarcity. Drip irrigation is considered as one of the most water-saving irrigation technologies. However, drip irrigation is not now commonly used in NCP field grain crops (particularly maize). Fertilizers are accurately administered to summer-maize root soil by recycling the drip-irrigation system of winter wheat. To increase the water and fertilizer-use efficiency of summer-maize fields, the coupling body of root-zone soil water and fertilizer for summer maize was thoroughly adjusted using a combination of emitter flow rate, irrigation quota, and fertilizer frequency. In this experiment, a split plot design with randomized blocks was employed. The primary plot was emitter flow rate (0.8 and 2.7 L/h), the subplot was irrigation water quota (120 and 150 m3/hm2, 1 hm2 = 10,000 m2), and the final plot was fertigation frequency (7, 14, and 28 days). The grain yield, water-use efficiency and fertilizer-use efficiency of summer maize were measured in this study. The results showed that grain yield and water-use efficiency (WUE) of the small-flow drip-irrigation treatment (emitter flow rate < 1 L/h) were significantly higher than the large-flow treatment (emitter flow rate > 1 L/h); the rates of grain yield increase were 8.2% and 13.3% and WUE were 3.5% and 8.0%, respectively. A higher irrigation quota can increase the yield of summer maize. The maximum yield and WUE were observed at the fertigation frequency of 7 days under small-flow drip-irrigation conditions. All comparisons and analyses showed that small-flow drip irrigation combined with high fertigation frequency could obtain higher yield and WUE in the NCP. This study proposes a new way to improve water and fertilizer utilization efficiency to achieve the goal of “increasing grain yield by fertilizing” and “adjusting the quality by fertilizing”, from the perspective of winter wheat–summer maize no-tillage annual rotation planting.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Key R&D Plan of Shandong Province

Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3