Predicting Chlorine and Trihalomethanes in a Full-Scale Water Distribution System under Changing Operating Conditions

Author:

Absalan Faezeh,Hatam Fatemeh,Barbeau BenoitORCID,Prévost Michèle,Bichai Françoise

Abstract

Predicting free chlorine residual and Trihalomethanes (THMs) in water distribution systems (DS) is challenging, given the variability and imprecise description of the chlorination conditions prevailing in full-scale systems. In this work, we used the variable reaction rate constant (VRRC) model, which offers the advantage of describing variable applied dosage and rechlorination conditions without the need for model recalibration. The VRRC model successfully predicted chlorine decay and THMs formation in ammonia-containing water at the lab scale. Comparing the goodness of fit results showed a better fit by the VRRC model than the 1st-order and an equally good fit compared to the parallel 1st-order model. However, the independence of the VRRC coefficients upon chlorine dosage made it a better choice for full-scale implementation than the parallel 1st-order model. Chlorine and THMs predictions in the DS were performed in 22 locations from a full-scale DS in southern Quebec (Canada). Chlorine predictions by VRRC were conducted in the spring and fall of 2021 under changing water quality conditions (temperature, DOC, dosage). With a prediction target of 0.1 mg/L absolute error, the VRRC model met this target in 77% of the points in the spring and 73% in the fall. While the predictions were comparable and slightly better than those of the 1st-order model, the main advantage of the VRRC was its applicability under variable dosage and rechlorination conditions (e.g., booster chlorination). THMs predictions in the DS were successfully performed in fall 2021. While 91% of the nodes had less than 5 μg/L of absolute prediction error with the VRRC model, the 1st-order model only met this target in 1 out of 22 points. In addition to its high precision, the VRRC can predict THMs using only the lab scale experiments for model parametrization. This enables small utilities with limited resources to predict the possibility of THMs non-compliances under changing water quality conditions with simple lab-based experiments. Changing climatic conditions can deteriorate drinking water quality, raise regulatory concerns for chlorine and THMs, and threaten public health. Water utilities can use the simple approach proposed in this work to assess the possibility of non-compliance under changing conditions. Moreover, the efficiency of different interventions or mitigation strategies to resolve or avoid non-compliance can be evaluated with this approach.

Funder

the Natural Sciences and Engineering Research Council of Canada (NSERC

the Industrial Chair on Drinking Water

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference41 articles.

1. Efficacy of ozone to reduce chlorinated disinfection by-products in Quebec (Canada) drinking water facilities;Ozone Sci. Eng.,2015

2. A Variable Rate Coefficient Chlorine Decay Model;Environ. Sci. Technol.,2009

3. Code of Federal Regulations (CFR) (2022, October 20). 40 CFR 141.72. National Primary Drinking Water Regulations, Subpart H—Filtration and Disinfection, Disinfection, Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-D/part-141/subpart-H.

4. Raising the bar on disinfectant residuals;World Water Mag.,2019

5. DBP formation kinetics in a simulated distribution system;Water Res.,2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3