A Method of FPGA-Based Extraction of High-Precision Time-Difference Information and Implementation of Its Hardware Circuit

Author:

Li ,Yan ,Li ,Meng ,Yan

Abstract

Abstract: The positioning technology to find shallow underground vibration sources based on a wireless sensor network is receiving great interest in the field of underground position measurements. The slow peaking and strong multi-waveform aliasing typical of the underground vibration signal result in a low extraction accuracy of the time difference and a poor source-positioning accuracy. At the same time, the transmission of large amounts of sensor data and the host computer’s slow data processing speed make locating a source a slow process. To address the above problems, this paper proposes a method for high-precision time-difference measurements in near-field blasting and a method for its hardware implementation. First, based on the broadband that is typical of blast waves, the peak frequency of the P-wave was obtained in the time–frequency domain, taking advantage of the difference in the propagation speed of the P-wave, S-wave, and the surface wave. Second, the phase difference between two sensor nodes was found by means of a spectral decomposition and a correlation measurement. Third, the phase ambiguity was eliminated using the time interval of the first break and the dynamic characteristics of the sensors. Finally, following a top-down design idea, the hardware system was designed using Field Programmable Gate Array(FPGA). Verification, using both numerical simulations and experiments, suggested that compared with generalized cross-correlation-based time-difference measurement methods, the proposed method produced a higher time-difference resolution and accuracy. Compared with the traditional host computer post-position positioning method, the proposed method was significantly quicker. It can be seen that the proposed method provides a new solution for solving high-precision and quick source-location problems, and affords a technical means for developing high-speed, real-time source-location instruments.

Funder

the National Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3