Abstract
Recently, device-free human activity–monitoring systems using commercial Wi-Fi devices have demonstrated a great potential to support smart home environments. These systems exploit Channel State Information (CSI), which represents how human activities–based environmental changes affect the Wi-Fi signals propagating through physical space. However, given that Wi-Fi signals either penetrate through an obstacle or are reflected by the obstacle, there is a high chance that the housing environment would have a great impact on the performance of a CSI-based activity-recognition system. In this context, this paper examines whether and to what extent housing environment affects the performance of the CSI-based activity recognition systems. Activities in daily living (ADL)–recognition systems were implemented in two typical housing environments representative of the United States and South Korea: a wood-frame apartment (Unit A) and a reinforced concrete-frame apartment (Unit B), respectively. The experimental results show that housing environments, combined with various environmental factors (i.e., structural building materials, surrounding Wi-Fi interference, housing layout, and population density), generate a significant difference in the accuracy of the applied CSI-based ADL-recognition systems. This outcome provides insights into how such ADL systems should be configured for various home environments.
Funder
Korea Agency for Infrastructure Technology Advancement
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献