Improvement of Thermal Behavior of Rattan by Lignosulphonate Impregnation Treatment

Author:

Madyaratri Elvara Windra,Iswanto Apri HeriORCID,Nawawi Deded SaripORCID,Lee Seng HuaORCID,Fatriasari WidyaORCID

Abstract

Lignin derived from black liquor has a lot of potentials, particularly in its thermal stability, for making value-added chemicals. The purpose of this study was to determine the effect of washing frequency during hydrochloric acid lignin isolation on the properties of eucalyptus kraft lignin. To improve its thermal characteristics and enable its usage as an additive flame retardant, the isolated lignin was synthesized into lignosulphonate. The lignin produced by 3× and 5× washing treatments had a purity of 85.88 and 92.85%, respectively. An FTIR analysis indicated that lignosulphonate was successfully synthesized from isolated lignin after 3× and 5× washing treatments, as the S=O bond was detected at around 627 cm−1. The lignosulphonate exhibited a purity of 71.89 and 67.21%, respectively. Thermal gravimetry and differential scanning calorimetry analysis revealed that the lignin and lignosulphonate after 3× and 5× washing treatments had a char residue of 44, 42, 32, and 48%, respectively. Glass transition temperatures (Tg) of 141, 147, 129, and 174 °C were observed. According to the findings, washing frequency increases lignin purity and Tg, thereby improving the thermal properties of lignosulphonate. Furthermore, the flammability of rattan impregnated with lignosulphonate was V-0 in the UL-94 vertical burning test.

Funder

Directorate of Research, Technology, and Community Services, Ministry of Education, Culture, Research and Technology

Publisher

MDPI AG

Subject

Forestry

Reference95 articles.

1. Industri Pulp Dan Kertas Sumbang Devisa Rp 114,4 T

2. Indonesia’s Pulp and Paper Are in the Top 10 in the World

3. Chapter 12—Pulping Fundamentals;Bajpai,2018

4. Chapter 23—Integrated biorefinery concept for Indian paper and pulp industry;Sailwal,2020

5. Recent developments in lignin modification and its application in lignin‐based green composites: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3