Deep Learning Model for Soil Environment Quality Classification of Pu-erh Tea

Author:

Cai Xiaobo,Yuan Wenxia,Liu Xiaohui,Wang Xinghua,Chen Yaping,Deng Xiujuan,Wu QiORCID,Han Ke,Cao Zhiyong,Wu Wendou,Wang Baijuan

Abstract

Pu-erh tea, Camellia sinensis is a traditional Chinese tea, one of the black teas, originally produced in China’s Yunnan Province, named after its origin and distribution center in Pu-erh, Yunnan. Yunnan Pu-erh tea is protected by geographical Indication and has unique quality characteristics. It is made from Yunnan large-leaf sun-green tea with specific processing techniques. The quality formation of Pu-erh tea is closely related to the soil’s environmental conditions. In this paper, time-by-time data of the soil environment of tea plantations during the autumn tea harvesting period in Menghai County, Xishuangbanna, Yunnan Province, China, in 2021 were analyzed. Spearman’s correlation analysis was conducted between the inner components of Pu’er tea and the soil environmental factor. The analysis showed that three soil environmental indicators, soil temperature, soil moisture, and soil pH, were highly significantly correlated. The soil environmental quality evaluation method was proposed based on the selected soil environmental characteristics. Meanwhile, a deep learning model of Long Short Term Memory (LSTM) Network for the soil environmental quality of tea plantation was established according to the proposed method, and the soil environmental quality of tea was classified into four classes. In addition, the paper also compares the constructed models based on BP neural network and random forest to evaluate the coefficient of determination (R2), mean absolute error (MAE), mean square error (MSE), mean absolute percentage error (MAPE) and root mean square error (RMSE) of the indicators for comparative analysis. This paper innovatively proposes to introduce the main inclusions of Pu’er tea into the classification and discrimination model of the soil environment in tea plantations, while using machine learning-related algorithms to classify and predict the categories of soil environmental quality, instead of relying solely on statistical data for analysis. This research work makes it possible to quickly and accurately determines the physiological status of tea leaves based on the establishment of a soil environment quality prediction model, which provides effective data for the intelligent management of tea plantations and has the advantage of rapid and low-cost assessment compared with the need to measure the intrinsic quality of Pu-erh tea after harvesting is completed.

Funder

Yunnan Science and Technology Major Project

National Natural Science Foundation of China

Yunnan Provincial Basic Research Project

scientific research fund project of Kunming Metallurgy College

Scientific research fund project of Yunnan Provincial Education Department

Yunnan Province “Ten Thousand People Plan” Industrial Technology Leading Talents Project

Yunnan Province Technology Innovation Talent Project

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tea Leaf Disease Detection using Deep Learning Convolutional Neural Network Model;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3