Effect of Temperature Exposition of Casting Solution on Properties of Polysulfone Hollow Fiber Membranes

Author:

Borisov IlyaORCID,Vasilevsky Vladimir,Matveev Dmitry,Ovcharova AnnaORCID,Volkov Alexey,Volkov Vladimir

Abstract

It was shown for the first time that the conditions of thermal treatment of the casting solution significantly affect the morphology and transport properties of porous, flat, and hollow fiber polysulfone (PSf) membranes. It is ascertained that the main solution components that are subjected to thermo-oxidative destruction are the pore-forming agent polyethylene glycol (PEG) and solvent N-methyl-2-pyrrolidone (NMP). It is proved that hydroxyl groups of PEG actively react in the process of the casting solution thermo-oxidative destruction. It is shown that despite the chemical conversion taking place in the casting solution, their stability towards coagulation virtually does not change. The differences in the membrane morphology associated with the increase of thermal treatment time at 120 °C are not connected to the thermodynamic properties of the casting solutions, but with the kinetics of the phase separation. It is revealed that the change of morphology and transport properties of membranes is connected with the increase of the casting solution viscosity. The rise of solution viscosity resulted in the slowdown of the phase separation and formation of a more densely packed membrane structure with less pronounced macropores. It is determined experimentally that with the increase of casting solution thermal treatment time, the membrane selective layer thickness increases. This leads to the decrease of gas permeance and the rise of the He/CO2 selectivity for flat and hollow fiber membranes. In the case of hollow fibers, the fall of gas permeance is also connected with the appearance of the sponge-like layer at the outer surface of membranes. The increase of selectivity and decline of permeance indicates the reduction of selective layer pore size and its densification, which agrees well with the calculation results of the average membrane density. The results obtained are relevant to any polymeric casting solution containing NMP and/or PEG and treated at temperatures above 60 °C.

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Reference51 articles.

1. Membrane Technology and Applications;Baker,2004

2. Basic Principles of Membrane Technology;Mulder,1996

3. Encyclopedia of Membranes;Ran,2016

4. Encyclopedia of Polymeric Nanomaterials;Ida,2014

5. Integrally skinned PSf-based SRNF-membranes prepared via phase inversion—Part A: Influence of high molecular weight additives

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3