Model-Based Analysis of Increased Loads on the Performance of Activated Sludge and Waste Stabilization Ponds

Author:

Ho Long,Pompeu Cassia,Van Echelpoel WoutORCID,Thas Olivier,Goethals Peter

Abstract

In a way to counter criticism on low cost-effective conventional activated sludge (AS) technology, waste stabilization ponds (WSPs) offer a valid alternative for wastewater treatment due to their simple and inexpensive operation. To evaluate this alternative with respect to its robustness and resilience capacity, we perform in silico experiments of different peak-load scenarios in two mathematical models representing the two systems. A systematic process of quality assurance for these virtual experiments is implemented, including sensitivity and identifiability analysis, with non-linear error propagation. Moreover, model calibration of a 210-day real experiment with 31 days of increased load was added to the evaluation. Generally speaking, increased-load scenarios run in silico showed that WSP systems are more resilient towards intermediate disturbances, hence, are suitable to treat not only municipal wastewater, but also industrial wastewater, such as poultry wastewater, and paperboard wastewater. However, when disturbances are extreme (over 7000 mg COD·L−1), the common design of the natural system fails to perform better than AS. Besides, the application of sensitivity analysis reveals the most influential parameters on the performance of the two systems. In the AS system, parameters related to autotrophic bacteria have the highest influence on the dynamics of particulate organic matter, while nitrogen removal is largely driven by nitrification and denitrification. Conversely, with an insignificant contribution of heterotrophs, the nutrient removal in the pond system is mostly done by algal assimilation. Furthermore, this systematic model-based analysis proved to be a suitable means for investigating the maximum load of wastewater treatment systems, and from that avoiding environmental problems and high economic costs for cleaning surface waters after severe overload events.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3