Abstract
The stage and duration of hypertension are connected to the occurrence of Hypertensive Retinopathy (HR) of eye disease. Currently, a few computerized systems have been developed to recognize HR by using only two stages. It is difficult to define specialized features to recognize five grades of HR. In addition, deep features have been used in the past, but the classification accuracy is not up-to-the-mark. In this research, a new hypertensive retinopathy (HYPER-RETINO) framework is developed to grade the HR based on five grades. The HYPER-RETINO system is implemented based on pre-trained HR-related lesions. To develop this HYPER-RETINO system, several steps are implemented such as a preprocessing, the detection of HR-related lesions by semantic and instance-based segmentation and a DenseNet architecture to classify the stages of HR. Overall, the HYPER-RETINO system determined the local regions within input retinal fundus images to recognize five grades of HR. On average, a 10-fold cross-validation test obtained sensitivity (SE) of 90.5%, specificity (SP) of 91.5%, accuracy (ACC) of 92.6%, precision (PR) of 91.7%, Matthews correlation coefficient (MCC) of 61%, F1-score of 92% and area-under-the-curve (AUC) of 0.915 on 1400 HR images. Thus, the applicability of the HYPER-RETINO method to reliably diagnose stages of HR is verified by experimental findings.
Funder
Imam Mohammad Ibn Saud Islamic University
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献