A Novel Approach for 3D-Structural Identification through Video Recording: Magnified Tracking

Author:

Harmanci Yunus,Gülan Utku,Holzner Markus,Chatzi EleniORCID

Abstract

Advancements in optical imaging devices and computer vision algorithms allow the exploration of novel diagnostic techniques for use within engineering systems. A recent field of application lies in the adoption of such devices for non-contact vibrational response recordings of structures, allowing high spatial density measurements without the burden of heavy cabling associated with conventional technologies. This, however, is not a straightforward task due to the typically low-amplitude displacement response of structures under ambient operational conditions. A novel framework, namely Magnified Tracking (MT), is proposed herein to overcome this limitation through the synergistic use of two computer vision techniques. The recently proposed phase-based motion magnification (PBMM) framework, for amplifying motion in a video within a defined frequency band, is coupled with motion tracking by means of particle tracking velocimetry (PTV). An experimental campaign was conducted to validate a proof-of-concept, where the dynamic response of a shear frame was measured both by conventional sensors as well as a video camera setup, and cross-compared to prove the feasibility of the proposed non-contact approach. The methodology was explored both in 2D and 3D configurations, with PTV revealing a powerful tool for the measurement of perceptible motion. When MT is utilized for tracking “imperceptible” structural responses (i.e., below PTV sensitivity), via the use of PBMM around the resonant frequencies of the structure, the amplified motion reveals the operational deflection shapes, which are otherwise intractable. The modal results extracted from the magnified videos, using PTV, demonstrate MT to be a viable non-contact alternative for 3D modal identification with the benefit of a spatially dense measurement grid.

Funder

European Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3