Affiliation:
1. Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
2. Administration of Jiangxi Guanshan National Nature Reserve, Yichun 336000, China
3. School of Humanities and Public Administration, Jiangxi Agricultural University, Nanchang 330045, China
Abstract
Neighborhood competition influences tree growth, which can affect species composition and community succession. However, there is a lack of understanding regarding how dominant tree species at different successional stages of forest communities respond in terms of crown architecture and functional traits during their growth process to neighborhood competition. In this study, we analyzed the responses of average annual basal area increment (BAI), crown architecture, and leaf functional traits of early-successional species (Cunninghamia lanceolata and Pinus massoniana), transitional species (Alniphyllum fortunei and Choerospondias axillaris), and late-successional species (Elaeocarpus duclouxii and Castanopsis carlesii) to neighbor competition in a secondary evergreen broad-leaved forest. We found that the BAI of all species is negatively correlated with competition intensity. Notably, early-successional and transitional species exhibited a more rapid decline in growth rates compared to late-successional species in response to increased competition. Among these tree species, the response of crown structure to neighbor competition exhibited variation. Early-successional and transitional species displayed a negative correlation between the competition index and crown area (CA)/diameter, while a positive correlation emerged between the lowest branch height (LBH)/height. Conversely, late-successional species followed the opposite trend. In terms of leaf functional traits, specific leaf area (SLA) showed heightened sensitivity to neighborhood competition, with a positive correlation between SLA of all tree species and the competition index. Furthermore, water use efficiency (WUE) demonstrated negative correlations with the competition index in early-successional and transitional trees, while a positive correlation emerged with late-successional trees. These findings suggest that early-successional and transitional trees prioritize vertical canopy growth, whereas late-successional trees tend to favor horizontal canopy expansion in response to neighboring competition. Additionally, early-successional and transitional trees experience more significant suppression of radial growth rate. Our research contributes to a deeper understanding of the underlying mechanisms driving changes in species composition and community succession.
Funder
National Natural Science Foundation of China
JIANGXI “DOUBLE THOUSAND PLAN”
Graduate Innovation Fund of Jiangxi Province
Reference66 articles.
1. Analysis of degraded evergreen broad-leaved forest communities in Eastern China and issues in forest restoration;Wang;Acta Ecol. Sin.,2005
2. Microtopography and distribution of canopy trees in a subtropical evergreen broad-leaved forest in the northern part of Okinawa Island, Japan;Enoki;Ecol. Res.,2003
3. Xue, J.H. (2006). Forest Ecology, China Forestry Publishing House.
4. 100yr of primary succession highlights stochasticity and competition driving community establishment and stability;Buma;Ecology,2019
5. Community Diversity and Succession: The Roles of Competition, Dispersal, and Habitat Modification;Tilman;Ecol. Stud.,1993
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献