A New Insight on the “S” Shape Pattern of Soft Faults in Time-Domain Reflectometry

Author:

Loete Florent1ORCID

Affiliation:

1. GeePs, Group of Electrical Engineering Paris, CNRS, CentraleSupélec, Université Paris-Saclay, 3 & 11 Rue Joliot-Curie, 91192 Gif-sur-Yvette, France

Abstract

This paper proposes a new interpretation of the commonly observed, very specific, time-domain response associated with a soft defect in an electrical line under test using time-domain reflectometry. The reflectometry reveals the nature of a defect by analyzing the reflections undergone by an injected pulse at the impedance discontinuities present on the line. The faulty section considered in this work is modeled as a local modification of the characteristic impedance. Using the developed model, we explain how, depending on the physical and electrical characteristics of the faulty section, the associated signature yields a very specific “S”-shaped pattern. The influence of the probing signal is also investigated. Finally, it is shown that the amplitude of the reflected signal cannot be interpreted straightforwardly as a mirror of the severity of the defect and that consequently, small echoes can mask more significant defects.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3