Real-Time Detection of an Undercarriage Based on Receptive Field Blocks and Coordinate Attention

Author:

Gao Ruizhen123,Ma Ya’nan1,Zhao Ziyue1,Li Baihua4,Zhang Jingjun123

Affiliation:

1. School of Mechanical Engineering and Equipment, Hebei University of Engineering, Handan 056038, China

2. Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province, Hebei University of Engineering, Handan 056038, China

3. Collaborative Innovation Center for Modern Equipment Manufacturing of Jinan New Area (Hebei), Handan 056038, China

4. Department of Computer Science, Loughborough University, Loughborough LE11 3TU, UK

Abstract

Currently, aeroplane images captured by camera sensors are characterized by their small size and intricate backgrounds, posing a challenge for existing deep learning algorithms in effectively detecting small targets. This paper incorporates the RFBNet (a coordinate attention mechanism) and the SIOU loss function into the YOLOv5 algorithm to address this issue. The result is developing the model for aeroplane and undercarriage detection. The primary goal is to synergize camera sensors with deep learning algorithms, improving image capture precision. YOLOv5-RSC enhances three aspects: firstly, it introduces the receptive field block based on the backbone network, increasing the size of the receptive field of the feature map, enhancing the connection between shallow and deep feature maps, and further improving the model’s utilization of feature information. Secondly, the coordinate attention mechanism is added to the feature fusion network to assist the model in more accurately locating the targets of interest, considering attention in the channel and spatial dimensions. This enhances the model’s attention to key information and improves detection precision. Finally, the SIoU bounding box loss function is adopted to address the issue of IoU’s insensitivity to scale and increase the speed of model bounding box convergence. Subsequently, the Basler camera experimental platform was constructed for experimental verification. The results demonstrate that the AP values of the YOLOv5-RSC detection model for aeroplane and undercarriage are 92.4% and 80.5%, respectively. The mAP value is 86.4%, which is 2.0%, 5.4%, and 3.7% higher than the original YOLOv5 algorithm, respectively, with a detection speed reaching 89.2 FPS. These findings indicate that the model exhibits high detection precision and speed, providing a valuable reference for aeroplane undercarriage detection.

Funder

Science and Technology Project of Hebei Education Department

Science and Technology Research Projects of Colleges and Universities in Hebei

Handan Science and Technology Bureau Project

Handan University school-level project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3