Coherent Markov Random Field-Based Unreliable DSM Areas Segmentation and Hierarchical Adaptive Surface Fitting for InSAR DEM Reconstruction

Author:

Qian Qian,Wang BingnanORCID,Hu Xiaoning,Xiang Maosheng

Abstract

A digital elevation model (DEM) can be obtained by removing ground objects, such as buildings, in a digital surface model (DSM) generated by the interferometric synthetic aperture radar (InSAR) system. However, the imaging mechanism will cause unreliable DSM areas such as layover and shadow in the building areas, which seriously affect the elevation accuracy of the DEM generated from the DSM. Driven by above problem, this paper proposed a novel DEM reconstruction method. Coherent Markov random field (CMRF) was first used to segment unreliable DSM areas. With the help of coherence coefficients and residue information provided by the InSAR system, CMRF has shown better segmentation results than traditional traditional Markov random field (MRF) which only use fixed parameters to determine the neighborhood energy. Based on segmentation results, the hierarchical adaptive surface fitting (with gradually changing the grid size and adaptive threshold) was set up to locate the non-ground points. The adaptive surface fitting was superior to the surface fitting-based method with fixed grid size and threshold of height differences. Finally, interpolation based on an inverse distance weighted (IDW) algorithm combining coherence coefficient was performed to reconstruct a DEM. The airborne InSAR data from the Institute of Electronics, Chinese Academy of Sciences has been researched, and the experimental results show that our method can filter out buildings and identify natural terrain effectively while retaining most of the terrain features.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3