Analysis of the Influence of Waste Seashell as Modified Materials on Asphalt Pavement Performance

Author:

Fan Guopeng,Liu Honglin,Liu Chaochao,Xue Yanhua,Ju Zihao,Ding Sha,Zhang Yuling,Li Yuanbo

Abstract

An increasing amount of waste seashells in China has caused serious environmental pollution and resource waste. This paper aims to solve these problems by using waste seashells as modified materials to prepare high-performance modified asphalt. In this study, seashell powder (SP) and stratum corneum-exfoliated seashell powder (SCESP) were adopted to prepare 10%, 20% and 30% of seashell powder-modified asphalt (SPMA) and stratum corneum-exfoliated seashell powder-modified asphalt (SCESPMA) by the high-speed shear apparatus, respectively. The appearance and composition of two kinds of SPs were observed and determined by the scanning electron microscope (SEM). The types of functional groups, temperature frequency characteristics, low temperature performance and adhesion of SPMA were tested by the Fourier-transform infrared (FTIR) spectrometer, dynamic shear rheometer (DSR), bending beam rheometer (BBR) and contact angle meter. The results show that the SP and SCESP are rough and porous, and their main component is CaCO3, which is physically miscible to asphalt. When the loading frequency ranges from 0.1 Hz to 10 Hz, the complex shear modulus (G*) and phase angle (δ) of SPMA and SCESPMA increase and decrease, respectively. At the same load frequency, SCESPMA has a larger G* and a smaller δ than SPMA. At the same temperature, SCESPMA has a larger rutting factor (G*/sin δ) and better high-temperature deformation resistance than SPMA. SP and SCESP reduce the low-temperature cracking resistance of asphalt, of which SCESP has a more adverse effect on the low-temperature performance of asphalt than SP. When SP and SCESP are mixed with asphalt, the cohesion work (Waa), adhesion work (Was) and comprehensive evaluation parameters of water stability (ER1, ER2 and ER3) of asphalt are improved. It is shown that both SP and SCESP have good water damage resistance, of which SCESP has better water damage resistance than SP. These research results have important reference value for the application of waste biological materials in asphalt pavement.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3