Influence of a Flat Polyimide Inlay on the Propagation of Guided Ultrasonic Waves in a Narrow GFRP-Specimen

Author:

Rittmeier LivORCID,Roloff ThomasORCID,Rauter NatalieORCID,Mikhaylenko AndreyORCID,Haus Jan NiklasORCID,Lammering Rolf,Dietzel AndreasORCID,Sinapius MichaelORCID

Abstract

Structural health monitoring systems for composite laminates using guided ultrasonic waves become more versatile with the structural integration of sensors. However, the data generated within these sensors have to be transmitted from the laminate to the outside, where polyimide-based printed circuit boards play a major role. This study investigates, to what extent integrated polyimide inlays with applied sensor bodies influence the guided ultrasonic wave propagation in glass fiber-reinforced polymer specimens. For reasons of resource efficiency, narrow specimens are used. Numerical simulations of a damping-free specimen indicate reflections of the S0-mode at the integrated inlay. This is validated experimentally with an air-coupled ultrasonic technique and a 3D laser Doppler vibrometry measurement. The experimental data are evaluated with a method including temporal and spatial continuous wavelet transformations to clearly identify periodically occurring wave packages as edge reflections and distinguish them from possible inlay reflections. However, even when separating in-plane and out-of-plane movements using the 3D measurement, no reflections at the inlays are detected. This leads to the conclusion that polyimide inlays are well suited as substrates for printed circuit boards integrated into fiber-reinforced polymer structures for structural health monitoring, since they do not significantly influence the wave propagation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

Reference49 articles.

1. Structural Health Monitoring with Piezoelectric Wafer Active Sensors;Giurgiutiu,2008

2. Identification of Damage Using LAMB Waves: From Fundamentals to Applications,2009

3. Structural Health Monitoring

4. Lamb-Wave Based Structural Health Monitoring in Polymer Composites

5. The interaction of Lamb waves with delaminations in composite laminates

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3