The Effect of Repeated Pressing on the Flexural Strength, Color Stability, Vickers Hardness, and Surface Topography of Heat-Pressed Lithium Disilicate

Author:

AbuHaimed Tariq S.,Alzahrani Saeed J.ORCID,Farsi Sami A.,AL-Turki Lulwa E.,Hajjaj Maher S.ORCID

Abstract

The aim of this study was to investigate the effect of repressing leftover heat-pressed lithium disilicate material on its mechanical and optical properties. A lithium disilicate ingot (IPS e.max® Press, IvoclarVivadent, Schaan, Liechtenstein) shade (A1) low translucency was first heat-pressed to yield ceramic bars and disks. Then, the second and third presses were fabricated from the leftovers of the previous pressing cycles. A total of 36 bars and 15 disk specimens were fabricated and divided into three groups according to the number of pressing cycles (n = 12 bars and n = 5 disks): P1: first press (control), P2: second press, and P3: third press. The specimens were tested for flexural strength, color change, Vickers hardness, and surface topography under scanning electron microscopy. One-way ANOVA testing was used to evaluate flexural strength and hardness, while an independent t-test was performed to evaluate color change. There was no significant difference in flexural strength as the number of heat-pressed cycles increased (p = 0.283). Similarly, there was no significant difference in the microhardness values between all groups (p = 0.220). The overall color change ∆E between P1–P2 and P1–P3 were 2.01 and 2.14, respectively. The SEM images showed evenly distributed and densely packed lithium disilicate crystals in the P1 group. However, larger and less densely packed crystals were noticeable in P2 and P3. The IPS e.max Press could be repressed up to two times without an adverse effect on mechanical properties or color stability. These results may support the reuse of pressed lithium disilicate for economical purposes, but further clinical evaluation should be conducted to confirm these findings.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3