Computational Design of Anticorrosion Properties of Novel, Low-Molecular Weight Schiff Bases

Author:

Malinowski SzymonORCID

Abstract

Due to the many economic consequences and technological problems caused by the corrosion process, its inhibition is one of the most important aspects of ongoing research. Computer methods, i.e., density functional theory (DFT) methods, are of great importance to the large-scale research being conducted which allows the evaluation of the corrosion inhibition performance without conducting time-consuming, long-term and expensive experimental measurements. In this study, new corrosion inhibitors were designed in three corrosion environments on the basis of their HOMO and LUMO orbital energies—the energy difference between them and their dipole moment. In addition, their interactions with the Fe and Cu surface were modelled on the basis of the number of electrons transferred during the formation of the protective adsorption layer (ΔN) and the initial energy between inhibitor molecule and protected metal surface (Δψ). The obtained results indicate that, among the aliphatic investigated Schiff bases, the N-methylpropan-1-imine (N-MP(1)I) molecule would theoretically have the highest corrosion inhibition efficiency mainly due to its high EHOMO value, relatively low ELUMO value, high chemical reactivity and high polarity.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3