Bolt-Loosening Detection Using 1D and 2D Input Data Based on Two-Stream Convolutional Neural Networks

Author:

Hou Xiaoli,Guo WeichaoORCID,Ren Shengjie,Li YanORCID,Si Yue,Su Lizheng

Abstract

At present, the detection accuracy of bolt-loosening diagnoses is still not high. In order to improve the detection accuracy, this paper proposes a fault diagnosis model based on the TSCNN model, which can simultaneously extract fault features from vibration signals and time-frequency images and can precisely detect the bolt-loosening states. In this paper, the LeNet-5 network is improved by adjusting the size and number of the convolution kernels, introducing the dropout operation, and building a two-dimensional convolutional neural network (2DCNN) model. Combining the advantages of a one-dimensional convolutional neural network (1DCNN) with wide first-layer kernels to suppress high-frequency noise, a two-stream convolutional neural network (TSCNN) is proposed based on 1D and 2D input data. The proposed model uses raw vibration signals and time-frequency images as input and automatically extracts sensitive features and representative information. Finally, the effectiveness and superiority of the proposed approach are verified by practical experiments that are carried out on a machine tool guideway. The experimental results show that the proposed approach can effectively achieve end-to-end bolt-loosening fault diagnoses, with an average recognition accuracy of 99.58%. In addition, the method can easily achieve over 93% accuracy when the SNR is over 0 dB without any denoising preprocessing. The results show that the proposed approach not only achieves high classification accuracy but also has good noise immunity.

Funder

National Natural Science Foundation of China

Science and Technology Activities Selection of Shaanxi Overseas Students

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3