Fusion Separation of Vanadium-Titanium Magnetite and Enrichment Test of Ti Element in Slag

Author:

Yang Shuangping,Liu Shouman,Guo Shijie,Zhang Tiantian,Li Jianghan

Abstract

In view of the problem that the enrichment and migration law of the Ti element in the slag of vanadium-titanium magnetite during the melting process is not clear, the phase transformation is not clear and the enrichment effect is not obvious, the single factor experiment and orthogonal experiment are used to optimize the melting conditions of Ti enrichment. Through XRD, SEM and EDS analysis, the effects of melting temperature, alkalinity and carbon content on the Ti phase in the slag are studied, and the occurrence form and migration law of the Ti element in the slag system under different melting conditions are clarified. The results demonstrate that increasing the basicity and melting temperature is beneficial to the enrichment of Ti, but it is too high it will lead to the formation of pyroxene, diopside and magnesia-alumina spinel, affecting the enrichment of Ti. The increase in carbon content can make Ti occur in slag in the form of titanium oxides such as TiO, TiO2, Ti2O3 and Ti3O5, but excessive carbon content leads to the excessive reduction of Ti compounds to TiCN and TiC. After optimization, under the melting conditions of alkalinity 1.2, the melting temperature 1500 °C and carbon content 15%, the content of Ti in slag can reach 18.84%, and the recovery rate is 93.54%. By detecting the content of Fe and V in molten iron, the recovery rates are 99.86% and 95.64%, respectively.

Publisher

MDPI AG

Subject

General Materials Science

Reference36 articles.

1. Influences of Technological Parameters on Smelting-separation Process for Metallized Pellets of Vanadium-bearing Titanomagnetite Concentrates

2. Reduction dynamics of carbon-containing pellets of vanadium-bearing titanomagnetite;Zhou;Iron Steel,2021

3. Basic sintering characteristics of several typical vanadium titanium magnetite;He;Iron Steel,2020

4. Experiment on solid state reduction of non-natural basicity carbon-containing pellet of vanadium-bearing titanomagnetite at high temperature;Wu;Iron Steel,2018

5. Progress in Technologies of Vanadium-Bearing Titanomagnetite Smelting in PanGang

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3