Research on Structural Performance of Hybrid Ferro Fiber Reinforced Concrete Slabs

Author:

Saeed Hafiz ZainORCID,Saleem Muhammad Zubair,Chua Yie SueORCID,Vatin Nikolai IvanovichORCID

Abstract

Reinforced concrete structures, particularly in cold areas, experience early deterioration due to steel corrosion. Fiber-Reinforced Concrete (FRC) is an emerging construction material and cost-effective substitute for conventional concrete to enhance the durability and resistance against crack development. This article examines the structural performance of hybrid ferro fiber reinforced concrete slabs (mix ratio of mortar 1:2) comprising silica fume, layers of spot-welded mesh and different ratios of polypropylene fibers. The ferrocement slabs are compared with a conventional Reinforced Cement Concrete (RCC) slab (mix ratio of 1:2:4). The experimental work comprised a total of 13 one-way slabs, one control specimen and three groups of ferrocement slabs divided based on different percentages of Poly Propylene Fibers (PPF) corresponding to 0.10%, 0.30% and 0.50% dosage in each group. Furthermore, in each group, the percentage of steel ratio in ferrocement slabs varied between 25% and 100% of the steel area in the reinforced concrete control slab specimen. For evaluating the structural performance, the observation of deflection, stress-strain behavior, cracking load and energy absorption are critical parameters assessed using LVDTs and strain gauges. At the same time, the slabs were tested in flexure mode with third point loading. The experimental results showed that the first cracking load and ultimate deflection for fibrous specimens with 0.5% fiber and 10% silica fume increased by 15.25% and 13.2% compared with the reference RCC control slab. Therefore, by increasing the percentage of PPF and steel wire mesh reinforcement in the ferrocement slab, the post-cracking behavior in terms of deflection properties and energy absorption capacity was substantially enhanced compared to the RCC control slab.

Funder

Ministry of Science and Higher Education of the Russian Federation under the strategic academic leadership program ‘Priority 2030′

Publisher

MDPI AG

Subject

General Materials Science

Reference68 articles.

1. Literature review on technical aspect of sustainable concrete;Mukherjee;Int. J. Eng. Sci. Invent.,2013

2. Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC

3. Enhancing the Impact Strength of Prepacked Aggregate Fibrous Concrete Using Asphalt-Coated Aggregates

4. Performance of fly ash and stone dust blended concrete in acidic environment;Verma;Concr. Res. Lett.,2013

5. Fly Ash-Based Eco-Efficient Concretes: A Comprehensive Review of the Short-Term Properties

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3