Biomass-Derived Sustainable Electrode Material for Low-Grade Heat Harvesting

Author:

Park Jonghak1,Kim Taewoo1ORCID

Affiliation:

1. Department of Mechanical Engineering, Incheon National University, Incheon 22012, Republic of Korea

Abstract

The ever-increasing energy demand and global warming caused by fossil fuels push for the exploration of sustainable and eco-friendly energy sources. Waste thermal energy has been considered as one of the promising candidates for sustainable power generation as it is abundantly available everywhere in our daily lives. Recently, thermo-electrochemical cells based on the temperature-dependent redox potential have been intensely studied for efficiently harnessing low-grade waste heat. Despite considerable progress in improving thermocell performance, no attempt was made to develop electrode materials from renewable precursors. In this work, we report the synthesis of a porous carbon electrode from mandarin peel waste through carbonization and activation processes. The influence of carbonization temperature and activating agent/carbon precursor ratio on the performance of thermocell was studied to optimize the microstructure and elemental composition of electrode materials. Due to its well-developed pore structure and nitrogen doping, the mandarin peel-derived electrodes carbonized at 800 °C delivered the maximum power density. The areal power density (P) of 193.4 mW m−2 and P/(ΔT)2 of 0.236 mW m−2 K−2 were achieved at ΔT of 28.6 K. However, KOH-activated electrodes showed no performance enhancement regardless of activating agent/carbon precursor ratio. The electrode material developed here worked well under different temperature differences, proving its feasibility in harvesting electrical energy from various types of waste heat sources.

Funder

Incheon National University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3