Redox-Enhanced Photoelectrochemical Activity in PHV/CdS Hybrid Film

Author:

Fu Mengyu1,Xu Dongzi1,Liu Xiaoxia1,Gao Yuji1,Yang Shenghong1ORCID,Li Huaifeng2,Luan Mingming1,Su Pingping3,Wang Nianxing1

Affiliation:

1. School of Chemistry and Pharmacy, Qilu University of Technology, Jinan 250353, China

2. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China

3. Delsitech Ltd., Itäinen Pitkäkatu 4 C (PharmaCity), 20520 Turku, Finland

Abstract

Semiconductive photocatalytic materials have received increasing attention recently due to their ability to transform solar energy into chemical fuels and photodegrade a wide range of pollutants. Among them, cadmium sulfide (CdS) nanoparticles have been extensively studied as semiconductive photocatalysts in previous studies on hydrogen generation and environmental purification due to their suitable bandgap and sensitive light response. However, the practical applications of CdS are limited by its low charge separation, which is caused by its weak ability to separate photo-generated electron-hole pairs. In order to enhance the photoelectrochemical activity of CdS, a polymer based on viologen (PHV) was utilized to create a series of PHV/CdS hybrid films so that the viologen unit could work as the electron acceptor to increase the charge separation. In this work, various electrochemical, spectroscopic, and microscopic methods were utilized to analyze the hybrid films, and the results indicated that introducing PHV can significantly improve the performance of CdS. The photoelectrochemical activities of the hybrid films were also evaluated at various ratios, and it was discovered that a PHV-to-CdS ratio of 2:1 was the ideal ratio for the hybrid films. In comparison with CdS nanoparticles, the PHV/CdS hybrid film has a relatively lower band gap, and it can inhibit the recombination of electrons and holes, enhancing its photoelectrochemical activities. All of these merits make the PHV/CdS hybrid film as a strong candidate for photocatalysis applications in the future.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3