Long-Term Antibacterial Efficacy of Cetylpyridinium Chloride-Montmorillonite Containing PMMA Resin Cement

Author:

Yoshihara Kumiko12ORCID,Nagaoka Noriyuki3,Makita Yoji1ORCID,Yoshida Yasuhiro4,Van Meerbeek Bart5ORCID

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, 2217-14 Hayashi-cho, Takamatsu 761-0395, Kagawa, Japan

2. Department of Pathology & Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Okayama, Japan

3. Advanced Research Center for Oral and Craniofacial Science, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Okayama, Japan

4. Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Hokkaido, Japan

5. Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Kapucijnenvoer 7, 3000 Leuven, Belgium

Abstract

Despite being able to adhesively restore teeth, adhesives and cement do not possess any anticariogenic protection potential, by which caries recurrence may still occur and reduce the clinical lifetime of adhesive restorations. Several antibacterial agents have been incorporated into dental adhesives and cement to render them anticariogenic. Due to an additional therapeutic effect, such materials are classified as ‘dental combination products’ with more strict market regulations. We incorporated cetylpyridinium chloride (CPC), often used for oral hygiene applications, into montmorillonite (CPC-Mont), the latter to serve as a carrier for controlled CPC release. CPC-Mont incorporated into tissue conditioner has been approved by the Pharmaceuticals and Medical Devices Agency (PmontMDA) in Japan. To produce a clinically effective dental cement with the antibacterial potential to prevent secondary caries, we incorporated CPC-Mont into PMMA resin cement. We measured the flexural strength, shear bond strength onto dentin, CPC release, and the biofilm-inhibition potential of the experimental CPC-Mont-containing PMMA cement. An 8 and 10 wt% CPC-Mont concentration revealed the antibacterial potential without reducing the mechanical properties of the PMMA cement.

Funder

JSPS KAKENHI

AMED project ACT MS

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference35 articles.

1. Secondary caries: What is it and how it can be controlled detected and managed?;Askar;Clin. Oral. Investig.,2020

2. Restorations in primary teeth: A systematic review on survival and reasons for failures;Chisini;Int. J. Paediatr. Dent.,2018

3. Reasons for placement and replacement of crowns in general dental practice;Lynch;Br. Dent. J.,2018

4. Antibacterial dental restorative materials: A review;Chen;Am. J. Dent.,2018

5. Silver nanoparticles in dentistry;Noronha;Dent. Mater.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3