High Thermoelectric Performance of a Novel γ-PbSnX2 (X = S, Se, Te) Monolayer: Predicted Using First Principles

Author:

Ding Changhao1,Duan Zhifu1,Luo Nannan1,Zeng Jiang1,Ren Wei1,Tang Liming1,Chen Keqiu1ORCID

Affiliation:

1. Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China

Abstract

Two-dimensional (2D) group IV metal chalcogenides are potential candidates for thermoelectric (TE) applications due to their unique structural properties. In this paper, we predicted a 2D monolayer group IV metal chalcogenide semiconductor γ-PbSn2 (X = S, Se, Te), and first-principles calculations and Boltzmann transport theory were used to study the thermoelectric performance. We found that γ-PbSnX2 had an ultra-high carrier mobility of up to 4.04 × 103 cm2 V−1 s−1, which produced metal-like electrical conductivity. Moreover, γ-PbSn2 not only has a very high Seebeck coefficient, which leads to a high power factor, but also shows an intrinsically low lattice thermal conductivity of 6–8 W/mK at room temperature. The lower lattice thermal conductivity and high power factors resulted in excellent thermoelectric performance. The ZT values of γ-PbSnS2 and γ-PbSnSe2 were as high as 2.65 and 2.96 at 900 K, respectively. The result suggests that the γ-PbSnX2 monolayer is a better candidates for excellent thermoelectric performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3