Electrochemical Lithium Extraction with Gas Flushing of Porous Electrodes

Author:

Wang Shengyao1,Yu Xuyu1,Hu Xuejiao1

Affiliation:

1. MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

Abstract

Electrochemical extraction of lithium from seawater/brine is receiving more and more attention because of its environment-friendly and energy-saving features. In this work, an electrochemical lithium extraction system with gas flushing of porous electrodes is proposed. We verified that the operation of multiple gas washes can significantly reduce the consumption of ultrapure water during the solution exchange and save the time required for the continuous running of the system. The water consumption of multiple gas flush operations is only 1/60 of that of a normal single flush to obtain a purity close to 100% in the recovery solution. By comparing the ion concentration distribution on the electrode surface in flow-through and flow-by-flow modes, we demonstrate that the flow-through mode performs better. We also verified the lithium extraction performance of the whole system, achieving a purity close to 100% and average energy consumption of 0.732 kWh∙kg−1 in each cycle from the source solution of the simulated Atacama salt lake water. These results provide a feasible approach for the large-scale operation of electrochemical lithium extraction from seawater/brine.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference34 articles.

1. Challenges for sustainable lithium supply: A critical review;Alessia;J. Clean. Prod.,2021

2. Lithium market research—global supply, future demand and price development;Martin;Energy Storage Mater.,2017

3. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources;Choubey;Miner. Eng.,2016

4. Lithium extraction from hard rock lithium ores: Technology, resources, environment and cost;Gao;China Geol.,2022

5. Global lithium resources: Relative importance of pegmatite, brine and other deposits;Kesler;Ore Geol. Rev.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3