Femtosecond Autocorrelation of Localized Surface Plasmons

Author:

Yi Ruizhi1ORCID,Wu Wenwen1,Zhang Xinping1ORCID

Affiliation:

1. Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China

Abstract

Plasmon electronic dephasing lifetime is one of the most important characteristics of localized surface plasmons, which is crucial both for understanding the related photophysics and for their applications in photonic and optoelectronic devices. This lifetime is generally shorter than 100 fs and measured using the femtosecond pump–probe technique, which requires femtosecond laser amplifiers delivering pulses with a duration even as short as 10 fs. This implies a large-scale laser system with complicated pulse compression schemes, introducing high-cost and technological challenges. Meanwhile, the strong optical pulse from an amplifier induces more thermal-related effects, disturbing the precise resolution of the pure electronic dephasing lifetime. In this work, we use a simple autocorrelator design and integrate it with the sample of plasmonic nanostructures, where a femtosecond laser oscillator supplies the incident pulses for autocorrelation measurements. Thus, the measured autocorrelation trace carries the optical modulation on the incident pulses. The dephasing lifetime can be thus determined by a comparison between the theoretical fittings to the autocorrelation traces with and without the plasmonic modulation. The measured timescale for the autocorrelation modulation is an indirect determination of the plasmonic dephasing lifetime. This supplies a simple, rapid, and low-cost method for quantitative characterization of the ultrafast optical response of localized surface plasmons.

Funder

National Natural Science Foundation of China

Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3