Investigation of Cerium Reduction Efficiency by Grinding with Microwave Irradiation in Mechanochemical Processing

Author:

Kato Tatsuya,Iwamoto Motonori,Tokoro ChiharuORCID

Abstract

This study evaluated the efficiency of cerium reduction by grinding with microwave irradiation in mechanochemical processing. Grinding experiments with microwave irradiation were conducted using an agitating mixer. Since the structure of the ground samples was amorphous and the cerium concentration was much lower than those of other elements, the valence change and structural change of cerium after grinding with microwave irradiation were investigated using X-ray absorption fine structure (XAFS) analysis in the cerium K-edge. The X-ray absorption near-edge structure (XANES) analysis revealed that a portion of tetravalent cerium was reduced to trivalent cerium by grinding with microwave irradiation. In addition, it was confirmed by extended X-ray absorption fine structure (EXAFS) analysis that oxygen vacancies were produced as a result of the cerium reduction reaction. To evaluate the efficiency of cerium reduction efficiency, the percentage reduction by grinding with microwave irradiation was compared to that by planetary ball milling and microwave irradiation. As a result, it was revealed that the efficiency of cerium reduction via grinding with microwave irradiation was higher than that via microwave irradiation and the same as that via planetary ball milling. Moreover, a larger amount of tetravalent cerium could be reduced to trivalent cerium by grinding with microwave irradiation than when using planetary ball milling and microwave irradiation.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3