Abstract
Cemented paste backfill (CPB) is the primary solution to improving the safety of continuous mining. The interaction between rock mass and backfill is an important indicator of backfill stability. The creep behavior of weak rock mass is an essential factor, which causes the evolution of stresses and displacements in the backfill stope. In this paper, numerical models were constructed to analyze the interactions between rock mass and backfill by considering the creep behavior of the rock mass, filling interval, and backfill strength. The numerical simulation results showed the effects of different parameters, including the number of backfilling layers, filling interval time (FIT), and backfill strength under creep behavior on stress, displacements, and plastic deformation. The horizontal displacement near the mid-height and vertical displacement at the top of the backfilled stope is the largest compared to layered backfilling. The stress within the backfilled stope is smallest when the stope is filled in a single layer. With increasing FIT, stress in the backfilled stope decreases. FIT mainly affected the horizontal displacement of the stope. The stresses on the stope bottom decrease when the strength of the middle-backfilled stope decreases. Overall, this study provides important insights for understanding the creep behavior of rock mass in underground backfilling practices.
Funder
China University of Mining and Technology
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献