Calibrating Carbonization Temperatures of Wood Fragments Embedded within Pyroclastic Density Currents through Raman Spectroscopy

Author:

Schito AndreaORCID,Pensa Alessandra,Romano ClaudiaORCID,Corrado Sveva,Vona AlessandroORCID,Trolese Matteo,Morgavi Daniele,Giordano Guido

Abstract

The study of the structural order of charcoals embedded in pyroclastic density currents provides information on their emplacement temperature during volcanic eruptions. In the present work, a set of charcoals from three distinct pyroclastic density currents deposits whose temperatures have been previously estimated by charcoal reflectance analyses to lie between 250 °C and 550 °C, was studied by means of Raman spectroscopy. The analyses reveal a very disordered structural ordering of the charcoals, similar to kerogen matured under diagenetic conditions. Changes in Raman spectra at increasing temperatures reflect depolymerization and an increase of aromaticity and can be expressed by parameters derived from a simplified fitting method. Based on this approach, a second order polynomial regression with a high degree of correlation and a minimum error was derived to predict paleotemperatures of pyroclastic deposits. Our results show that Raman spectroscopy can provide a reliable and powerful tool for volcanological studies and volcanic hazard assessment given its advantage of minimum samples preparation, rapid acquisition processes and high precision.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3