Improved Recovery and Selectivity of Lanthanide-Ion-Binding Cyclic Peptide Hosts by Changing the Position of Acidic Amino Acids

Author:

Hosokawa YoichiORCID,Oshima Ayako,Hatanaka TakaakiORCID,Ishida NobuhiroORCID

Abstract

The development of an effective host molecule to separate lanthanide (Ln) ions and a method for predicting its guest recognition/self-assembly behavior based on primary chemical structures are highly sought after in both academia and industry. Herein, we report the improvement of one-pot Ln ion recovery and a performance prediction method for four new cyclic peptide hosts that differ in the position of acidic amino acids. These cyclic peptide hosts could recognize Ln3+ directly through a 1:1 complexation–precipitation process and exhibited high Lu3+ selectivity in spite of similar ion size and electronegativity when the positions of the acidic amino acids were changed. This unpredictable selectivity was explained by considering the dipole moment, lowest unoccupied molecular orbital, and cohesion energy. In addition, a semi-empirical function using these parameters was proposed for screening the sequence and estimating the isolated yields without long-time molecular dynamics calculations. The insights obtained from this study can be employed for the development of high-performance peptides for the selective recovery of Ln and other metal ions, as well as for the construction of diverse supramolecular recognition systems.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3