First Demonstration of Recognition of Manganese Crust by Deep-Learning Networks with a Parametric Acoustic Probe

Author:

Hong FengORCID,Huang Minyan,Feng Haihong,Liu Chengwei,Yang Yong,Hu Bo,Li Dewei,Fu Wentao

Abstract

The quantitative evaluations of mineral resources and delineation of promising areas in survey regions for future mining have attracted many researchers’ interest. Cobalt-Rich manganese crusts (Mn-crusts), as one of the three significant strategic submarine mineral resources, lack effective and low-cost detection devices for surveying since the challenging distribution requires a high vertical and horizontal resolution. To solve this problem, we have built an engineering prototype parametric acoustic probe named PPPAAP19. With the echo data acquired by the probe, the interpretation of the accurate thickness information and the seabed classification using the deep learning network-based method are realized. We introduce the acoustic dataset of the minerals collected from two sea trials. Firstly, the preprocessing method and data augment strategy used to form the dataset are described. Afterward, the performances of several baseline approaches are assessed on the dataset, and the experimental results show that they all achieve high accuracy for binary classification. We find that the end-to-end approach for binary classification based on a 1D Convolution Neural Network has a comprehensive advantage. Such a demonstration validates the possibility of binary classification for recognizing the ferromanganese crust only in an acoustic manner, which may significantly contribute to the efficiency of the survey.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association

the development fund for Shanghai talents

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3