Zircon (U-Th)/He Closure Temperature Lower Than Apatite Thermochronometric Systems: Reconciliation of a Paradox

Author:

Gérard BenjaminORCID,Robert XavierORCID,Grujic DjordjeORCID,Gautheron CécileORCID,Audin Laurence,Bernet MatthiasORCID,Balvay Mélanie

Abstract

Here, we present seven new zircon (U-Th)/He (ZHe) ages and three new zircon fission track (ZFT) ages analyzed from an age-elevation profile (Machu Picchu, Peru). ZFT data present ages older than those obtained with other thermochronological data, whereas the ZHe data interestingly present ages similar to those obtained with apatite (U-Th)/He (AHe). It has been proposed that He retention in zircon is linked to the damage dose, with an evolution of the closure temperature from low values associated with a low α-dose (<1016 α/g), subsequently increasing before decreasing again at a very high α-dose (>1018 α/g). Studies have focused on He diffusion behavior at high α-dose, but little is known at low doses. We propose that the ZHe closure temperature at α-dose ranging from 6 × 1015 to 4 × 1016 α/g is in the range of ~60–80 °C. This value is lower than that proposed in the current damage model ZRDAAM and demonstrates that the ZHe and AHe methods could have similar closure temperatures at low α-dose (i.e., similar ages). These new data strengthen our previous geological conclusions and even highlight a cooling rate approximately twice as important as that deduced from AHe and apatite fission track data alone at Machu Picchu.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3