Magnetic Fabrics and Petrography of Rocksalts Reveal Preferred Orientation of Anhydrites within a Halite Matrix

Author:

Issachar Ran,Weinberger Ram,Levi Tsafrir,Barabasch Jessica,Urai Janos L.

Abstract

We investigate the magnetic fabrics and microstructures of diamagnetic rocksalt samples from the Sedom salt wall (diapir), Dead Sea Basin, as possible strain markers. A comprehensive study of anisotropy of magnetic susceptibility (AMS), combined with magnetic, microtextural, geochemical and mineralogical analyses allows us to depict the deformation mechanisms and to reveal the mineral sources of the AMS. The rocksalts are composed of halite as the major mineral phase (>80%) and anhydrite as a minor phase (5–20%), and have an average magnetic susceptibility value of −13.4 ± 0.7 × 10−6 SI. Ferromagnetic and paramagnetic minerals make a negligible contribution to the bulk magnetic properties of the samples. The AMS indicates and reveals significant anisotropy with the maximum susceptibility axis (K1) subparallel to the bedding strike, although the cubic halite crystals are isotropic. Polarizing microscope and SEM images show preferred alignment of needle-like anhydrite crystals parallel to the direction of the K1 axis. Petrographic investigation of gamma irradiated thin sections reveals the deformation recorded in the microstructures of the rocksalts and points to a dominant contribution by dislocation creep, although both dislocation creep and pressure solution were active deformation mechanisms. We infer that during dislocation creep, the thin bands of anhydrite crystals deform along with the surrounding halite grains. We suggest that although the shape preferred orientation of halite grains is not indicative of finite strain because of resetting by grain boundary migration, the preferred orientation of the anhydrite crystals may be. These results suggest that the AMS of the rocksalts provides a textural proxy that reflects deformation processes of the rocksalts, despite their very low magnetic susceptibility.

Funder

Israel Science Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3