Elaboration of a Phytoremediation Strategy for Successful and Sustainable Rehabilitation of Disturbed and Degraded Land

Author:

Sekhohola-Dlamini Lerato M.ORCID,Keshinro Olajide M.ORCID,Masudi Wiya L.ORCID,Cowan A. KeithORCID

Abstract

Humans are dependent upon soil which supplies food, fuel, chemicals, medicine, sequesters pollutants, purifies and conveys water, and supports the built environment. In short, we need soil, but it has little or no need of us. Agriculture, mining, urbanization and other human activities result in temporary land-use and once complete, used and degraded land should be rehabilitated and restored to minimize loss of soil carbon. It is generally accepted that the most effective strategy is phyto-remediation. Typically, phytoremediation involves re-invigoration of soil fertility, physicochemical properties, and its microbiome to facilitate establishment of appropriate climax cover vegetation. A myco-phytoremediation technology called Fungcoal was developed in South Africa to achieve these outcomes for land disturbed by coal mining. Here we outline the contemporary and expanded rationale that underpins Fungcoal, which relies on in situ bio-conversion of carbonaceous waste coal or discard, in order to explore the probable origin of humic substances (HS) and soil organic matter (SOM). To achieve this, microbial processing of low-grade coal and discard, including bio-liquefaction and bio-conversion, is examined in some detail. The significance, origin, structure, and mode of action of coal-derived humics are recounted to emphasize the dynamic equilibrium, that is, humification and the derivation of soil organic matter (SOM). The contribution of plant exudate, extracellular vesicles (EV), extra polymeric substances (EPS), and other small molecules as components of the dynamic equilibrium that sustains SOM is highlighted. Arbuscular mycorrhizal fungi (AMF), saprophytic ectomycorrhizal fungi (EMF), and plant growth promoting rhizobacteria (PGPR) are considered essential microbial biocatalysts that provide mutualistic support to sustain plant growth following soil reclamation and restoration. Finally, we posit that de novo synthesis of SOM is by specialized microbial consortia (or ‘humifiers’) which use molecular components from the root metabolome; and, that combinations of functional biocatalyst act to re-establish and maintain the soil dynamic. It is concluded that a bio-scaffold is necessary for functional phytoremediation including maintenance of the SOM dynamic and overall biogeochemistry of organic carbon in the global ecosystem

Funder

Anglo American

Rhodes University

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference265 articles.

1. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa

2. Market, investment, and policy challenges for South African coal

3. Competition for Land: The Water-Energy-Food Nexus and Coal Mining in Mpumalanga Province, South Africa

4. The BFAP Baseline—Agricultural Outlook 2012–2021,2012

5. Evaluating the Impact of Coal Mining on Agriculture in the Delmas, Ogies and Leandra Districts: A Focus on Maize Production. Report Compiled for the Maize Trust,2012

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3