Mineral Composition Impact on the Thermal Conductivity of Granites Based on Geothermal Field Experiments in the Songliao and Gonghe Basins, China

Author:

Ye Xiaoqi,Yu Ziwang,Zhang Yanjun,Kang Jianguo,Wu Shaohua,Yang Tianrui,Gao Ping

Abstract

Accurate estimation of thermal conductivity of rocks is of paramount importance for projects such as the development of hot dry rock and the geological storage of nuclear waste. In this paper, 30 granite samples from the Songliao and Gonghe Basins in China were tested by X-ray diffraction, polarizing microscope, and Thermal Conductivity Scanning (TCS) measurements. Different mineral contents determine the thermal conductivity of the rock as a whole. The geometric average model and the harmonic average model have great limitations. Combined with the above two models, a new model is proposed for estimating the thermal conductivity, and results are less different from the measured values and have universal applicability. The relative estimation error on the thermal conductivity calculated by mineral composition is significantly reduced. The accuracy of thermal conductivity calculation can be improved by mineral composition.

Funder

National Natural Science Foundation of China

Scientific Research Project of Education Department of Jilin Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3