The Paleogene Gosau Group Slope Basins of the Incipient Eastern Alpine Orogenic Wedge: A Case Study at the Gams Basin (Austria)

Author:

Koukal VeronikaORCID,Wagreich MichaelORCID,Kallanxhi Mădălina-ElenaORCID,Knierzinger Wolfgang

Abstract

This study investigates the Paleogene deep-water depositional system of the Gosau Group at Gams, Styria (Austria). The examined sections of the Danian to the Ypresian age (NP1–NP12) comprise sediments of the Nierental and Zwieselalm Formations. Four deep-water clastic facies assemblages were encountered: (1) pelagic marls with thin turbidites, (2) carbonate-rich turbidites, (3) carbonate-poor turbidites, and (4) marl-bearing turbidites; slump beds and mass flow deposits are common features in all facies assemblages. Based on heavy mineral, thin section, microprobe, and paleoflow analyses, provenance was from the surrounding Northern Calcareous Alps (NCA) rocks and exhuming metamorphic Upper Austroalpine units to the south. In addition, biogenic calcareous material was delivered by adjacent contemporaneous shelf zones. The sedimentary depocenter was situated at the slope of the incipient Alpine orogenic wedge, in frontal parts of the NCA, facing the subducting Penninic Ocean/Alpine Tethys. The evolution of the Gams Basin was connected to the eoalpine and mesoalpine orogeny and the adjunctive transpressional setting. The Gams deep-water depositional system is interpreted as an aggrading or prograding submarine fan, deposited into a small confined slope basin, positioned along an active continental margin, bound and influenced by (strike-slip) faults, related to crustal shortening. The development of the Gams slope basin and its infilling sequences was mainly dominated by tectonism and sediment supply, rather than by eustatic sea-level fluctuations. The basin was cut off during the Eocene due to renewed orogeny. A Quaternary analogue for the Upper Cretaceous to Paleogene basin setting of the Gams area is represented by the Santa Monica Basin in the California Continental Borderland.

Funder

Austrian Academy of Sciences

IGCP 609

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference79 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3