Evolution of Black Talc upon Thermal Treatment

Author:

Meng Yuhang,Xie Weimin,Wu Haiyan,Tariq Sarwar MuhammadORCID,Yang HuamingORCID

Abstract

Black talc is a natural silicate clay mineral with a typical 2:1 layered structure, low electrical conductivity, large specific surface area, and high thermal stability. The world’s largest black talc mine, with known reserves of one billion tons, is located in China’s Jiangxi province. Due to the restriction of its color, the application of black talc is only limited to ceramic raw materials, coating filler, waterproof materials, and other low-end application industries. Thermal treatment is a common method of clay mineral modification. It is vital to examine the structural and physical changes of black talc during calcination in order to prepare black-talc-based composites and to broaden their applications. This work discusses the evolution of black talc upon thermal treatment (30–1000 °C) and the corresponding structural changes. The thermal stability of minerals was analyzed via thermogravimetric (TG) analysis and thermogravimetry–mass spectrometry (TG-MS). The decomposition of minerals during calcination consists of four processes: dehydration, organic carbon decomposition, dihydroxylation, and phase transformation. In situ FTIR and in situ XRD were employed to track changes in black talc in real time during thermal treatment. At 800 °C, black talc was found to begin to go through dihydroxylation, and the crystallinity index decreased significantly. The XRD pattern of samples at 950 °C (T950) showed the reflection of the enstatite structure, and the relative crystallinity index was 27.3%, indicating that the mineral had undergone phase transformation. In addition, the Brunauer–Emmet–Teller (BET), laser particle size analyzer, Zeta potential, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques were used to systematically characterize the physicochemical properties of minerals at different temperatures. The results show that black talc’s particle size and specific surface area increase with the calcination temperature. The surface charge changes, and more amorphous SiO2 and MgO appear, indicating that thermal treatment could induce structural changes and activate the surface of black talc.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3