An Experimental Study on the Effects of True Triaxial Loading and Unloading Stress Paths on the Mechanical Properties of Red Sandstone

Author:

Wang ShuaiORCID,Wang Lianguo,Tian Jiansheng,Fan Hao,Jiang Chongyang,Ding Ke

Abstract

Loading and unloading stress paths play critical roles in investigating the deformation and failure of roadway excavation. In this study, tests under four different loading and unloading stress paths were conducted on red sandstone samples, with the aid of a self-developed true triaxial test system. Meanwhile, the deformation and failure characteristics of the samples were monitored during the tests. The following research conclusions were obtained: The octahedral shear stress is linearly correlated with the average effective stress, and the correlation coefficient R2 is 0.9825. The Mogi–Coulomb strength criterion is superior to the Drucker–Prager strength criterion in reflecting strength failure characteristics of red sandstone during loading and unloading. Shear failure tends to occur under uniaxial compression, whereas shear–tensile composite failure occurs under loading and unloading conditions. Compared with the true triaxial loading test, loading and unloading tests produce a larger strain in the unloading direction. Under loading and unloading stress paths, with the increase in intermediate principal stress (IPS), the strain in the direction of IPS gradually changes from expansion to compression, and the peak strength gradually increases. The state of IPS affects the failure strength of the sample and reflects the strengthening effect of IPS. This paper boasts a certain value and significance for research on the deformation and failure characteristics of sandstone in the actual in situ stress environment with triaxial dynamic changes.

Funder

Financial support from the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3