Abstract
In order to meet renewable energy goals in the near future, the deployment of photovoltaic (PV) panels on buildings will dramatically increase. The objective of this paper is to introduce an improved design for PV cladding systems that will greatly contribute to meeting these renewable energy goals. Typically, building-integrated photovoltaic (BIPV) panels are vertically oriented as cladding and they are not coupled with individual storage batteries. The proposed cladding couples a tilted BIPV panel with one or more storage batteries at each building placement. Thus, the tilted BIPV plus battery system is independent of other power generation in the building and it is referred to as a “building perma-power link” (BPPL) cladding element. Each cladding panel is designed as a stand-alone system, which will be useful for installation, operation, and maintenance. The hyper-redundancy of multiple BPPL cladding panels for a typical building significantly enhances its overall energy resiliency. In order to foster manufacturing ease, each individual cladding unit has been designed at tilts of 45° and 60°. An example of a mid-rise building in Seattle, Washington is provided. The degree of building energy resiliency provided through multiple BPPLs is examined.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献