Monitoring of Urban Growth with Improved Model Accuracy by Statistical Methods

Author:

Ayazli

Abstract

While the rural population is decreasing day by day, the urban population is increasing rapidly. Urban growth, which occurs as a result of this increase, is sprawling toward natural and environmental areas in urban fringes, and constitutes the main source of many environmental, physical, social, and economic problems. In order to overcome these problems, the direction and rate of urban growth should be determined with simulation models. In this context, many urban growth models have been developed since the 1990s; the SLEUTH urban growth model is one of the most popular among them and has been used in many projects around the world. The brute force calibration process in which the best fit values of growth coefficients are determined is the most important stage of simulation models. The coefficient ranges are initially defined as being between 0 and 100 and are then narrowed in this step according to 13 separate regression scores, which are used to specify the characterization of urban growth. Consensus has not yet been reached as to which metrics should be used for calculating the best fit values, but the Lee–Sallee and Optimum SLEUTH Metric (OSM) methods have been mostly used in past studies. However, in rapidly growing study areas, these methods cannot truly explain urban growth properties. The main purpose of this paper is to precisely calibrate urban growth simulation models. Therefore, Exploratory Factor Analysis (EFA) was used to calculate the growth coefficients, as a new statistical approach for calibration, in this study. The district of Sancaktepe, Istanbul, which experienced population growth of 80% between 2008 and 2018, was selected as the study area in order to test the achievement of the EFA method, and two urban growth simulation models were generated for the years 2030 and 2050. According to the results, despite the fact that there is little effect of urban growth in the short term, more than 70% of forests and agricultural lands are at risk of urbanization by 2050.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3