Data Assimilation for Rainfall-Runoff Prediction Based on Coupled Atmospheric-Hydrologic Systems with Variable Complexity

Author:

Wang Wei,Liu Jia,Li Chuanzhe,Liu Yuchen,Yu Fuliang

Abstract

The data assimilation technique is an effective method for reducing initial condition errors in numerical weather prediction (NWP) models. This paper evaluated the potential of the weather research and forecasting (WRF) model and its three-dimensional data assimilation (3DVar) module in improving the accuracy of rainfall-runoff prediction through coupled atmospheric-hydrologic systems. The WRF model with the assimilation of radar reflectivity and conventional surface and upper-air observations provided the improved initial and boundary conditions for the hydrological process; subsequently, three atmospheric-hydrological systems with variable complexity were established by coupling WRF with a lumped, a grid-based Hebei model, and the WRF-Hydro modeling system. Four storm events with different spatial and temporal rainfall distribution from mountainous catchments of northern China were chosen as the study objects. The assimilation results showed a general improvement in the accuracy of rainfall accumulation, with low root mean square error and high correlation coefficients compared to the results without assimilation. The coupled atmospheric-hydrologic systems also provide more accurate flood forecasts, which depend upon the complexity of the coupled hydrological models. The grid-based Hebei system provided the most stable forecasts regardless of whether homogeneous or inhomogeneous rainfall was considered. Flood peaks before assimilation were underestimated more in the lumped Hebei model relative to the other coupling systems considered, and the model seems more applicable for homogeneous temporal and spatial events. WRF-Hydro did not exhibit desirable predictions of rapid flood process recession. This may reflect increasing infiltration due to the interaction of atmospheric and land surface hydrology at each integration, resulting in mismatched solutions for local runoff generation and confluence.

Funder

National Natural Science Foundation of China

Major Science and Technology Program for Water Pollution Control and Treatment

National Key Research and Development Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3