NASA’s MODIS/VIIRS Global Water Reservoir Product Suite from Moderate Resolution Remote Sensing Data

Author:

Li YaoORCID,Zhao GangORCID,Shah DeepORCID,Zhao Maosheng,Sarkar SudiptaORCID,Devadiga Sadashiva,Zhao BingjieORCID,Zhang ShuaiORCID,Gao Huilin

Abstract

Global reservoir information can not only benefit local water management but can also improve our understanding of the hydrological cycle. This information includes water area, elevation, and storage; evaporation rate and volume values; and other characteristics. However, operational wall-to-wall reservoir storage and evaporation monitoring information is lacking on a global scale. Here we introduce NASA’s new MODIS/VIIRS Global Water Reservoir product suite based on moderate resolution remote sensing data—the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS). This product consists of 8-day (MxD28C2 and VNP28C2) and monthly (MxD28C3 and VNP28C3) measurements for 164 large reservoirs (MxD stands for the product from both Terra (MOD) or Aqua (MYD) satellites). The 8-day product provides area, elevation, and storage values, which were generated by first extracting water areas from surface reflectance data and then applying the area estimations to the pre-established Area–Elevation (A–E) relationships. These values were then further aggregated to monthly, with the evaporation rate and volume information added. The evaporation rate and volume values were calculated after the Lake Temperature and Evaporation Model (LTEM) using MODIS/VIIRS land surface temperature product and meteorological data from the Global Land Data Assimilation System (GLDAS). Validation results show that the 250 m area classifications from MODIS agree well with the high-resolution classifications from Landsat (R2 = 0.99). Validation of elevation and storage products for twelve Indian reservoirs show good agreement in terms of R2 values (0.71–0.96 for elevation, and 0.79–0.96 for storage) and normalized root-mean-square error (NRMSE) values (5.08–19.34% for elevation, and 6.39–18.77% for storage). The evaporation rate results for two reservoirs (Lake Nasser and Lake Mead) agree well with in situ measurements (R2 values of 0.61 and 0.66, and NRMSE values of 16.25% and 21.76%). Furthermore, preliminary results from the VIIRS reservoir product have shown good consistency with the MODIS based product, confirming the continuity of this 20-year product suite. This new global water reservoir product suite can provide valuable information with regard to water-sources-related studies, applications, management, and hydrological modeling and change analysis such as drought monitoring.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3