Abstract
Retinol binding protein 4 (RBP4) is a transporter of vitamin A that is secreted mainly by hepatocytes and adipocytes. It affects diverse pathophysiological processes, such as obesity, insulin resistance, and cardiovascular diseases. MicroRNAs (miRNAs) have been reported to play indispensable roles in regulating various developmental processes via the post-transcriptional repression of target genes in mammals. However, the functional link between RBP4 and changes in miRNA expression in porcine granulosa cells (GCs) remains to be investigated. To examine how increased expression of RBP4 affects miRNA expression, porcine GCs were infected with RBP4-targeted lentivirus for 72 h, and whole-genome miRNA profiling (miRNA sequencing) was performed. The sequencing data were validated using real-time quantitative polymerase chain reaction (RT-qPCR) analysis. As a result, we obtained 2783 known and 776 novel miRNAs. In the experimental group, 10 and seven miRNAs were significantly downregulated and upregulated, respectively, compared with the control group. Ontology analysis of the biological processes of these miRNAs indicated their involvement in a variety of biological functions. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these miRNAs were involved mainly in the chemokine signaling pathway, peroxisome proliferators-activated receptors (PPAR) signaling pathway, insulin resistance pathway, nuclear factor-kappa B(NF-kappa B) signaling pathway, and steroid hormone biosynthesis. Our results indicate that RBP4 can regulate the expression of miRNAs in porcine GCs, with consequent physiological effects. In summary, this study profiling miRNA expression in RBP4-overexpressing porcine GCs provides an important reference point for future studies on the regulatory roles of miRNAs in the porcine reproductive system.
Funder
National Natural Science Foundation of China
Subject
General Veterinary,Animal Science and Zoology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献