Domain Adaptation for Bearing Fault Diagnosis Based on SimAM and Adaptive Weighting Strategy

Author:

Tang Ziyi12ORCID,Hou Xinhao12,Huang Xinheng32ORCID,Wang Xin42ORCID,Zou Jifeng12

Affiliation:

1. School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China

2. Institute of Intelligent Control and Fault Diagnosis, Tianjin University of Technology, Tianjin 300384, China

3. Maritime College, Tianjin University of Technology, Tianjin 300384, China

4. Engineering Training Center, Tianjin University of Technology, Tianjin 300384, China

Abstract

Domain adaptation techniques are crucial for addressing the discrepancies between training and testing data distributions caused by varying operational conditions in practical bearing fault diagnosis. However, transfer fault diagnosis faces significant challenges under complex conditions with dispersed data and distinct distribution differences. Hence, this paper proposes CWT-SimAM-DAMS, a domain adaptation method for bearing fault diagnosis based on SimAM and an adaptive weighting strategy. The proposed scheme first uses Continuous Wavelet Transform (CWT) and Unsharp Masking (USM) for data preprocessing, and then feature extraction is performed using the Residual Network (ResNet) integrated with the SimAM module. This is combined with the proposed adaptive weighting strategy based on Joint Maximum Mean Discrepancy (JMMD) and Conditional Adversarial Domain Adaption Network (CDAN) domain adaptation algorithms, which minimizes the distribution differences between the source and target domains more effectively, thus enhancing domain adaptability. The proposed method is validated on two datasets, and experimental results show that it improves the accuracy of bearing fault diagnosis.

Funder

National University Innovation and Entrepreneurship Training Programs Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3