Photophore Morphogenesis and Extraocular Encephalopsin Expression during the Embryogenesis of Smalleye Pygmy Shark (Squaliolus aliae)

Author:

Duchatelet LaurentORCID,Ho Hsuan-Ching,Mallefet JérômeORCID

Abstract

Bioluminescence is a common phenomenon in marine organisms, especially in deep water where faint blue light remains. Among elasmobranchs, three families display the ability to emit light, the Etmopteridae, the Dalatiidae, and the Somniosidae. Luminous sharks have thousands of minute light organs, called photophores, that are mainly present ventrally and produce light. The main function of shark luminescence is counterillumination to camouflage the shark silhouette by mimicking the residual ambient light and avoiding being spotted by predators underneath. To perform counterillumination efficiently, luminescence needs to be finely adjusted. A new type of control was recently demonstrated via extraocular photoreception at the level of the light organ. An encephalopsin (i.e., opsin 3) was shown to be expressed in the vicinity of the photophore of an Etmopteridae species, Etmopterus spinax. This opsin was also demonstrated to be expressed concomitantly with the photophore development (i.e., when photophores become able to produce light) during E. spinax embryogenesis. To understand the photophore morphogenesis of different shark families, we analyzed the smalleye pygmy shark, Squaliolus aliae, with a photophore formation which represents the first report on the Dalatiidae family. Since Dalatiidae and Etmopteridae are phylogenetically closely related, the photophore morphogenesis was compared with an Etmopteridae representative, Etmopterus spinax. The results also reveal that Squaliolus aliae shares similar encephalopsin expression pattern as in Etmopterus spinax, which further supports evolutionary conservation of photophore morphogenesis as well as its own encephalopsin-based light perception across the two luminous shark families.

Funder

F.R.S.-FNRS

travel grant

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference50 articles.

1. Bioluminescence in the sea;Haddock;Ann. Rev. Mar. Sci.,2010

2. Quantification of bioluminescence from the surface to the deep sea demonstrates it predominance as an ecological trait;Martini;Sci. Rep.,2017

3. Oceanic bioluminescence: An overview of general functions;Young;Bull. Mar. Sci.,1983

4. Bioluminescence;Hastings;Cell Physiol.,1995

5. Stimulation by adrenalin of the luminescence of deep-sea fish;Harvey;Zoologica,1931

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3