Abstract
The Boraginales (Boraginaceae a.l.) comprise more than 2450 species worldwide. However, little knowledge exists of the characteristics of the complete plastid genome. In this study, three new sequences representing the first pt genome of Heliotropiaceae and Cordiaceae were assembled and compared with other Boraginales species. The pt genome sizes of Cordia dichotoma, Heliotropium arborescens, and Tournefortia montana were 151,990 bp, 156,243 bp, and 155,891 bp, respectively. Multiple optimal codons were identified, which may provide meaningful information for enhancing the gene expression of Boraginales species. Furthermore, codon usage bias analyses revealed that natural selection and other factors may dominate codon usage patterns in the Boraginales species. The boundaries of the IR/LSC and IR/SSC regions were significantly different, and we also found a signal of obvious IR region expansion in the pt genome of Nonea vesicaria and Arnebia euchroma. Genes with high nucleic acid diversity (pi) values were also calculated, which may be used as potential DNA barcodes to investigate the phylogenetic relationships in Boraginales. psaI, rpl33, rpl36, and rps19 were found to be under positive selection, and these genes play an important role in our understanding of the adaptive evolution of the Boraginales species. Phylogenetic analyses implied that Boraginales can be divided into two groups. The existence of two subfamilies (Lithospermeae and Boragineae) in Boraginaceae is also strongly supported. Our study provides valuable information on pt genome evolution and phylogenetic relationships in the Boraginales species.
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献